Excerpt – Direct Bonded Copper

Presented by

Douglas C. Hopkins, Ph.D.
312 Bonner Hall
University at Buffalo
Buffalo, NY 14620-1900
607-729-9949, fax: 607-729-7129

Courtesy of Curamic Electronics
Authors thank

Curamik® Electronics

A member of

Aavid™ Thermal Technologies, Inc.

for providing information and photos

Courtesy of Curamic Electronics
DCB Process

• Oxygen reduces the melting point of Cu from 1083°C to 1065°C (Eutectic melting temperature).
• Oxidation of copper foils or injection of oxygen during high temperature annealing (1065°C and 1080°C) forms thin layer of eutectic melt.
• Melt reacts with the Alumina by forming a very thin Copper-Aluminum-Spinel layer.
• Copper to copper is fused the same way.
• Copper-Aluminum-Nitride (AlN) DBC is possible. The AlN-Surface must be transformed to Alumina by high temperature oxidation.
Schematic diagram of the DBC (Direct Bonding Copper) Process.

1. **Copper**
2. **Ceramic**
3. **Copper Oxide**
4. **Eutectic Melt**

- **O₂** diffusion and cooling:
 - Copper
 - Ceramic

- **Temperature in °C**
 - 1080
 - 1070
 - 1060
 - 1050

- **O₂ Concentration in Atom-%**
 - 0
 - 0.4
 - 0.8
 - 1.2
 - 1.6

Eutectic

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins

d.hopkins@ieee.org
Flow Chart of DBC Processing

- DBC Process
- Masking
- Etching
- Laser Scribing
- Final Cleaning
- Electroless Nickel
- Electroless Gold
- Separating mastercards by breaking
- Shipping to customer as single parts
- Shipping to customer as mastercards

Substrate blank
- copper surface
- Substrate Ni plated
- Substrate Ni + Au surface

Control

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins
d.hopkins@ieee.org
Masking

- High precision screen printers for high volume
- Semiautomatic and fully automatic with pattern recognition
- Redundant equipment
- Photomasking for high density circuits
- Air conditioned clean rooms

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins
d.hopkins@ieee.org
Etching

- Specially designed precision etchers for thick copper layers
- Automatic chemistry control
- Mask stripping integrated
- 3 separate high volume lines in operation
- Controlled by SPC

Courtesy of Curamic Electronics
Plating / Final Cleaning

• Fully automatic high volume plating line for electroless Ni + Au
• Controlled by SPC
• Final cleaning for Cu integrated
• Parallel backup lines
• Solderability and wire bond testing

Courtesy of Curamic Electronics
Laser Machining

• Fully automatic high precision CO$_2$ lasers with pattern recognition
• Designed for high volume throughput
• Scribing and drilling
• Multiple equipment
• Controlled by SPC
Features of DBC Substrates

- Low thermal coefficient of expansion despite relatively thick copper layers
 \(\text{TCE} = 7.2 - 7.4 \times 10^{-6} \text{ at } 0.3\text{mm} / 12\text{mil} \text{ copper} \)
- High current carrying capability with thick copper
 (Copper width 1mm / 40mil, height 0.3mm / 12mil, continuous flow 100amps = temp rise of 14 - 17°C)
- High peel strength of copper to Al2O3 \(\geq 60\text{N/cm} \);
 AlN \(\geq 45\text{N/cm} \) at 50mm/min peel speed
- High thermal conductivity
 (Al2O3 = 24W/mK; AlN = 170 W/mK)
- Low capacitance between front- and backside copper
 (Appr. 18pF/cm² for 0.63mm ceramic thickness)
Relative Heat Flux (W/sqm)

- Chips need Cooling
- Surface of Sun
- Power Semiconductor Chip
- Saturn V
- Engine
- (Case)
- Hot-Plate
- Logic Chips
- Light Bulb (100 W)
- Heat Loss from Human Body

Absolute temperature [K]

Source: Semikron

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins d.hopkins@ieee.org
Principal Design of IGBT Power Module

- Current contact
- Plastic casing
- Hard encapsulation
- Soft encapsulation
- IGBT / Diode
- Solder joint
- DBC substrate
- Cu baseplate
- Thermal grease
- Heat sink

Al thick wire bond

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins
d.hopkins@ieee.org
Single Switch Module

4 Substrates, 4 IGBT‘s and 4 Diodes

Courtesy of Curamic Electronics
Power Module – Thermal Resistance

Thermal Resistance as a function of Substrate Thermal Conductivity

Chip area = 100mm²; ceramic thickness; 0.635mm; copper baseplate 3mm; power dissipation 100W; solder 0.070mm

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins
d.hopkins@ieee.org
Thermal Mass

Junction temperature as function of the dynamic thermal resistance

Influence of copper thickness

Influence of Rth static

0,15 mm 0,3 mm 0,6 mm

© 2003, D. C. Hopkins d.hopkins@ieee.org

Courtesy of Curamic Electronics
Flexural Strength of DBC

as a function of copper thickness

![Graph showing flexural strength of DBC as a function of copper thickness. The graph includes lines for Alumina Standard and different DBC thicknesses.](image)

Courtesy of Curamic Electronics
Flexural Strength of HPS DBC

Compared with Blank HPS (optimized Alumina) Ceramic

![Graph showing comparison of Flexural Strength between DBC and Optimized Alumina.](image)

Probability of Failure F [%]

Flexural Strength [MPa]

Courtesy of Ceramic Electronics

© 2003, D. C. Hopkins
Dimple Design

Top view Cross section

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins d.hopkins@ieee.org
Thermal Cycling Reliability

Standard Alumina DBC with and w/o Dimples

Probability of Chonchoidal Fracture F [%]

Number of Temperature Cycles

- Standard DBC
- Dimples DBC

Courtesy of Curamic Electronics
Average Life N0 – (Weibull)

*\(d_{\text{ceramic}}\) = 25 mil, \(d_{\text{Cu}}\) = 12 mil
\(-55^\circ\text{C} / 150^\circ\text{C} / 15\text{ min.}\)

\(d_{\text{ceramic}}\) = 15 mil, \(d_{\text{Cu}}\) = 8 mil
\(-55^\circ\text{C} / 150^\circ\text{C} / 15\text{ min.}\)

without Dimples

with Dimples (Copper pattern design for thermal stress relief)

Courtesy of Curamic Electronics
Special Substrates

- Active Metal Brazed (AMB)
- Refractory Metallization
- Substrates with vias
- Substrates with lead offs
- 3-Dimensional substrates
- DBC Packages
- Water cooled substrates
Via Technology

Both sides flat surface. Ceramic hole diameter min. 1.0mm R<100μΩ

One side flat surface. Ceramic hole diameter min. 1.0mm R<100μΩ

One side flat surface low cost. Ceramic hole diameter 2.5mm (0.3mm copper layer) R<100μΩ

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins

d.hopkins@ieee.org
Vias in DBC Substrates

- High current front to back feed-through
 - 100 A current
 - 100 µOhm
- For backside ground-plane or shield
- Both hermetic
- Version 1 can be used as thermal path also

Courtesy of Curamic Electronics
Integral Terminals

• Terminals made of same copper sheet as circuit
• High electrical conductivity due to solid metal without interface resistance
• Very high reliability

Courtesy of Curamic Electronics
3-Dimensional DBC

- For very high density circuits
- Extremely reliable due to integral connectors
- Base for power
- Sidewalls for non-power components
- Assembled flat and bend up

Courtesy of Curamic Electronics
Package Types

Side Lead

Kovar Lid

Wirebond

Chip

Kovar Frame

Top Lead

Kovar Lid

Wirebond

Chip

Kovar Frame

1 Via

2 Direct Bonded Pin

Ceramic Copper 1 Via 2 Direct Bonded Pin

Courtesy of Curamic Electronics
Package Types

- **Down Lead**
 - Kovar Lid
 - Wirebond
 - Chip
 - Kovar Frame

- **Glass to Metal Seals**
 - Kovar Lid
 - Wirebond
 - Chip
 - Glass
 - Kovar Pin

- **Surface Mount**
 - Kovar Lid
 - Wirebond
 - Chip
 - Kovar Frame

© 2003, D. C. Hopkins d.hopkins@ieee.org
Kovar Frame Brazed on DBC Substrate

Glass Sealed Feed-Through

Courtesy of Curamic Electronics
Fluid Cooled DBC

- Lowest thermal resistance of all available solutions for COB
- R_{th} ranging from 0.08 to 0.02 K/W using Al2O3 or AlN
- Power dissipation up to 3 kW on 2” x 2”
- Extremely compact design
- Modular system assembly

Courtesy of Curamic Electronics
Liquid flow-through micro channels

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins

d.hopkins@ieee.org
Micro Channels

Courtesty of Curamic Electronics

© 2003, D. C. Hopkins

d.hopkins@ieee.org
Micro Channel Water Cooled Module

Half bridge
6 IGBT
12 Diodes
62 mm Standard
module size
450 A
Cooling water
temperature up to 80°C
possible

Courtesy of Curamic Electronics
R_{thja} as a Function of Water Flow

![Graph showing R_{thja} as a function of water flow. The graph includes lines for AlN integration, Al2O3 integration, Al2O3 substrate, and AlN substrate. The x-axis represents water flow in l/min, and the y-axis represents R_{thja} in mK/W.](image)

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins
d.hopkins@ieee.org
Module comparison

Conventional v. Integrated water cooling

1 → Standard module on closed cooling system (calculation)
2 → Module with integrated cooling system (measurement: soldered Al₂O₃ ceramics)
3 → Module with integrated AlN substrate

About 60% reduction of R_{thJA} (flowrate 2.5l/min.) 2 → 1

Courtesy of Curamic Electronics